\【中学受験】立体図形が “伸び悩みの壁” になっていませんか?/

中学受験の算数で、最も「家庭では教えにくい」と言われるのが立体図形です。
- 平面図だけではイメージできない
- 切断・回転・展開図が頭に入らない
- 問題文と図が一致しない
- 点数が安定しない
こうした悩みは、“見て・触って・動かして理解できる教材”を使うと、驚くほど改善します。
家庭学習でも、立体図形が“実際に目の前で動かせる”ことで、
子どもたちの理解スピードが一気に変わります。
中学受験算数のプロが開発した、
【小学4〜6年生対象】立体図形対策教材はこちら👇
ラサール入試問題(算数)でつまずく原因

ラサールの入試問題(算数)って、過去問を解かせても全然点が上がらなくて…うちの子に合う勉強法が分からないです
この記事では、そんな悩みに対してラサール入試問題(算数)でつまずく理由と、家庭でできる“伸びる過去問の回し方”を順番に解説します。
難しいのは「発想」より「整理と型」
ラサールの算数は、もちろん手ごたえがあります。
ですが、苦手な子が止まる原因は「天才的な発想が必要だから」ではなく、たいてい次の2つです。
- 条件を整理できず、式に入れない
- 解き方の“型”(図・表・考え方)が定まらない
算数は、型が決まると急に楽になります。逆に型がないまま入試問題に突っ込むと、毎回「初見問題」に見えてしまい、点が安定しません。
失点は3種類(方針・手順・実行)
点が取れない原因を「計算ミス」で片づけてしまうと、対策がズレます。
失点はこの3つに分けるのがコツです。
- 方針ミス:何を求め、何をそろえるか決まらない
- 手順ミス:解き方は合っているが遠回りで時間切れ
- 実行ミス:計算・写し間違い・条件の読み落とし
とくにラサールレベルでは①②が多く、①②が原因で焦って③が増える、という流れがよく起きます。だから復習は「どのミスか」を毎回言語化するところから始めます。
過去問が“伸びない教材”になるパターン
次のどれかに当てはまると、過去問をやっても伸びにくいです。
- 解説を読んで「分かった」で終了
- 間違えた問題だけ赤で直して終わり
- 1年分を一度解いて次の年へ(復習が薄い)
入試問題は「解けた・解けない」より、次に同型が出たとき再現できるかが大切。
だから、少ない年数でも“回し方”で得点は上がります。
ラサール算数の入試問題:頻出分野と優先順位
最優先で固めたい3領域(割合・比/速さ/図形)
ラサールの算数は、典型の土台がある子ほど伸びます。家庭学習で優先したいのは次の3領域です。
- 割合・比:線分図・比のそろえ方が武器になる
- 速さ:ダイヤグラム・旅人算の整理ができると安定
- 図形(平面・立体):補助線、分割、見取り図が鍵
この3つは、入試問題で複合されやすく、「基礎が弱いと全体が崩れる」分野でもあります。
逆に、ここが固いと難問にも粘れます。
差がつきやすい分野(場合の数・数の性質)
次に差がつきやすいのが、
- 場合の数(規則・表・漏れなく数える)
- 数の性質(倍数・約数・余り・規則性)
です。コツは「公式暗記」ではなく、書いて整理する型を身につけること。例えば場合の数は、文章のまま考えると必ず漏れます。表・樹形図・整理表のどれかに落とすだけで正答率が上がります。
苦手な子のための「捨てない時間配分」
算数が苦手な子ほど、「難問で固まって時間が消える」ことが最大の損です。家庭で徹底したいのはこのルールだけ。
- 3分止まったら“次の問題へ”
- まずは「確実に取れる問題」を拾う
- 最後に戻って粘る(戻れなければ捨てる)
時間配分は才能ではなく、練習で作れる技術です。過去問演習は、ここを育てる最高の場です。
入試問題の解き方:ラサール過去問を3周で仕上げる
1周目(診断):時間より“止まった場所”を見る
1周目の目的は「点を取る」ではなく、止まった場所の特定です。採点後に必ず次をメモします。
- どこで止まった?(条件整理/式/図/計算)
- ミスの種類は?(方針・手順・実行)
- 何を書けば進んだ?(表?線分図?補助線?)
このメモがあるだけで、家庭学習がブレません。
2周目(再現):説明できるまでが合格
2周目の合格ラインは「正解した」ではなく、自分の言葉で説明できるです。親はこう聞くだけでOK。
- 「最初に何をそろえるの?」
- 「どんな図(表)を書くの?」
- 「この式は何を表しているの?」
言えないところが“理解が抜けている場所”。そこを埋めれば、同型が出たときに得点になります。
3周目(高速化):同型を素早く正確に
3周目は、解法を「速く・安定して」出す練習です。
- 図や表を先に書く(迷いを減らす)
- 計算量を減らす(比でそろえる、置き方を工夫する)
- 見直し順を固定する(単位→条件→計算)
この3つで、入試問題の「再現率」が一気に上がります。
解き直しノートのテンプレ(そのまま使える)
ノートは作り込み不要です。1問につき、この3行だけ書けば十分です。
- ミス分類:方針/手順/実行
- 最初の一手:何をそろえる?何を書く?
- 次回の約束:例)表にしてから式/補助線を先に入れる/3分で切る
これを積み上げると、過去問が「怖い問題集」ではなく「得点を作る教材」に変わります。
家庭でできる実践アドバイス(親の関わり方)
親は教えずに“質問で引き出す”
家庭で一番効果が出る関わり方は、親が長く説明することではなく、短い質問で考えを引き出すことです。
- 「今わかっている条件はどれ?」
- 「図にすると何を書く?」
- 「似た問題、前にあった?」
子どもが自分で言語化すると、理解が定着し、次に再現できます。
ミス別の直し方(計算ミスだけで終わらせない)
ミスは原因別に直し方を固定すると伸びます。
- 方針ミス:標準問題に戻って“型”を入れ直す
- 手順ミス:同じ解法でも短い手順に改善する
- 実行ミス:見直し順を固定(単位→条件→計算)
「次は気をつける」ではなく、「次はこの順で確認する」と決めることが、再発防止になります。
図形・立体は「見える化」で得点源になる
図形・立体は、苦手な子でも伸びやすい分野です。理由は、見える形にできれば理解が早いから。
- 平面図形:補助線で同じ形を作る/面積は分割して足す
- 立体:見取り図を描く/分割して体積を足す
- 展開図:どの面がつながるかを確認してから考える
「頭の中だけで回さない」ことが、入試問題の得点力に直結します。
まとめ
ラサールの入試問題(算数)で点が伸びるかどうかは、才能よりも過去問の使い方で決まります。
- つまずきの正体は「整理と型」の不足になりやすい
- 失点は(方針・手順・実行)に分けて復習する
- 過去問は「1年分を3周(診断→再現→高速化)」が最短
- 家庭は教えるより、短い質問で再現させる
- 図形・立体は見える化で得点源になる
もし今日から1つだけやるなら、解き直しノートに「ミス分類」と「最初の一手」を書き残してください。ここが整うと、入試問題が“解けない壁”から“伸びる材料”に変わります。
\【中学受験】立体図形が “伸び悩みの壁” になっていませんか?/

中学受験の算数で、最も「家庭では教えにくい」と言われるのが立体図形です。
- 平面図だけではイメージできない
- 切断・回転・展開図が頭に入らない
- 問題文と図が一致しない
- 点数が安定しない
こうした悩みは、“見て・触って・動かして理解できる教材”を使うと、驚くほど改善します。
家庭学習でも、立体図形が“実際に目の前で動かせる”ことで、
子どもたちの理解スピードが一気に変わります。
中学受験算数のプロが開発した、
【小学4〜6年生対象】立体図形対策教材はこちら👇

